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Supplementary Fig. 1. Sample subtyping and genome-wide methylation dynamics in 

glioblastoma. a Glioblastoma samples (n = 60) clustered using methylation array probes (n = 

7386) from Sturm et al., 2012. b Consensus subtyping based CpG Island (CGI) methylation 

and non-CGI methylation applied with hierarchical partitioning. Results are presented as 

follows: the inner circle corresponds to the methylation array subtyping as depicted in panel 

(a). The outer circle represents the cluster that the sample is assigned to in that data type, 

colored by the cluster identity. We found that CGI methylation cannot distinguish the MES 

and RTK I subtypes, while for non-CGI methylation the MES subtype splits into two 

subgroups, of which one is closer to the RTK II samples. These results illustrate that the 

methylation dynamics of GB subtypes vary depending on the features analysed. c Density 

heatmaps showing per-sample DNA methylation (y-axis, WGBS beta) genome-wide, in 

TSSs, exons, introns, and in intergenic regions. Heatmap colors correspond to density of the 

methylation distribution in each sample (column). Samples are labelled with their subtype. 

Below the heatmaps, multidimensional scaling (MDS) plots for sample methylation 

corresponding to (A) As observed in the methylation consensus subtyping in panel (b), the 

separation of subtypes is dependent on the methylation feature examined. 
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Supplementary Fig. 1  
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Supplementary Fig. 2. limma analysis of subtype gene signatures. a Venn diagram showing 

overlap of the limma-defined subtype gene signatures. For each subtype, gene expression 

was compared to the other 3 subtypes weighted equally (example: IDH vs (MES+RTK I+RTK 

II)/3). Genes with adj. P-value < 0.001 were deemed significant. b Multi-dimensional scaling 

(MDS) plot of all genes present in the 4 subtype gene signatures in all subtyped glioblastomas 

(n = 60) using limma-voom log-cpm values. Samples are coloured by their subtype. c 

Examples of subtype genes. From left: FREM3, IDH; CXCL5, MES; ERBB3, RTK I; MEOX2, 

RTK II. log-cpm values from limma-voom are plotted, grouped by subtype, as Tukey boxplots 

and violin plots. limma 2-sided p-values (corrected using the Benjamini-Hochberg method) are 

displayed. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK II, n = 17 samples. d Cahoy mouse 

brain cell signature ssGSEA enrichment and ESTIMATE scores for each subtype, shown as 

Tukey boxplots and violin plots. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK II, n = 17 

samples. e Gene Ontology term annotation of subtype gene expression (significant terms at 

adj. P-value < 0.1 (two-sided) are shown; correction for multiple testing using the Benjamini-

Hochberg method). Up-regulated genes for each subtype (logFC > 0, adj. P-value < 0.05) were 

tested for Gene Ontology enrichment. The number of tested genes for each subtype is 

indicated. 
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Supplementary Fig. 2  
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Supplementary Fig. 3. RTN analysis. a MDS plots showing the result of ComBat batch effect 

removal on the samples in cohort B. Each point corresponds to a sample, coloured by the 

source study. b Comparison of networks A and B using TF subtype activation scores. For TFs 

common to both networks (n = 506), activity was defined as the 2-tail GSEA differential 

enrichment score (dES) for each TF regulon for each subtype signature. Common subtype 

MRs (adjusted P-value < 0.01 with the same direction of activation in both networks) are 

coloured, and the Spearman’s rank correlation is displayed. c Overlap of significant MRs 

identified in networks A and B. The overlap (n = 126) is larger than the number of common 

subtype MRs (n = 117) as the subtype is not taken into account. d Activity of common subtype 

MRs (n = 117) across all subtypes. A heatmap of the TF activity (two-tailed dES-test, red 

activation; blue repression) is shown, with TFs (rows) clustered by the dES scores. Subtype 

significant MRs (adj. P-value < 0.01; correction for multiple testing using the Benjamini-

Hochberg method) are labelled with asterisks. We identify previously reported GB MRs 

(FOSL1/2, CEBP) and CNS developmental TFs (HES1, JUND, GLI2, POU3F2, SOX9, TCF3, 

NFIC, MAFB, BNC2, ASCL1, MYT1, MYT1L, SOX10). The two-tailed dES-test is similar to the 

GSEA permutation test (n=1000 permutations) using the computed enrichment score. 
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Supplementary Fig. 3  
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Supplementary Fig. 4. Cell line model selection. a SOX10 locus DNA methylation (beta) 

assayed by the 450k/EPIC DNA methylation arrays in GB cell lines (top) and the MES and 

RTK I subtype averages in this study’s tumours (bottom). The distance from the assayed CpG 

to the SOX10 TSS is indicated above the heatmap. b SOX10 gene expression (Affymetrix 

microarray intensities) in GB cell line models. c Genome browser visualisation of the SOX10 

locus. Histone modifications (H3K27ac, H3K4me1, H3K4me3) and the ChromHMM annotation 

from a single representative RTK I tumour and LN229 cells are shown, along with SOX10 

binding (ChIP-seq), chromatin accessibility (ATAC-seq) and RNA-seq in LN229 and ZH487 

cells. d Venn diagram of the overlap of SOX10 binding sites identified using ChIP-seq in the 

ZH487 (left) and LN229 (right) cell line models. The most significant result of de novo motif 

finding with HOMER, annotated as SOX10, for these common binding sites is displayed. 

Enrichment P-value for SOX10 was computed based on a binomial test comparing the 

frequency of the motif in foreground vs. background sequences. 
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Supplementary Fig. 4 
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Supplementary Fig. 5. SOX10 repression causes a PN-MES transcriptomic switch. a Western 

blot showing efficient repression of SOX10 protein expression in ZH487, using shRNA 

(shSOX10), and LN229, using CRISPRi (sgSOX10); based on three independent experiments, 

each. Alpha-tubulin loading control is also displayed. Molecular weights (kDa) measured by 

standards are indicated on the left. b GSEA plots showing enrichment of a mesenchymal gene 

signature and concurrent depletion of a proneural gene signature in SOX10 KD relative to 

control ZH487cells. GSEA-calculated statistics for gene set enrichment are shown. Top row: 

limma signatures; Bottom row: Wang signatures. P-values (control/RTK I: 0.018; control/PN_: 

0.074; KD/MES: < 0.001; KD/MES-Wang: < 0.001) and FDR values are computed empirically 

using a permutation test (n=1000 permutations) based on the enrichment score. c Master 

Regulator activity heatmap (VIPER NES) for the RTK I and MES CRC MRs, in the LN229 and 

ZH487 cell line models. Average expression profiles for each condition (for LN229, n = 1 

replicate; for ZH487, n = 2 replicates) were used in a VIPER analysis using RTN network A. 

Each column corresponds to a cell line condition, and is annotated with the cell line and 

treatment (top) and VIPER-inferred activity of SOX10 (bottom). *: two-tailed t-test, P-value < 

0.05. d Trans-well invasion assay of ZH487 cells without (top, control) and with SOX10 

repression (bottom). Cell numbers were quantified for n =10 wells per condition in one 

experiment; scale bar: 50 µm. e Ex vivo organotypic brain slice invasion assay. LN229 cells 

with and without SOX10 repression (shNT+Dox vs. shSOX10+Dox) were seeded into freshly 

harvested murine brain slices (350 μm) and left for 3 days. Representative, inverted colour 

images and bar plots of mean cell-spike length (pixels) of one experiment are shown; on 

average 15 spikes were examined per cell; control, n = 21 cells; SOX10 KD, n = 15 cells; ; 

scale bar: 100 µm. Mean values are plotted in (d) and (e); whiskers indicate the standard 

deviation. 
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Supplementary Fig. 5 
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Supplementary Fig. 6. ZH487 genomics experiments. a EnrichedHeatmap visualisation of 

genome regions with differential chromosome accessibility in control and SOX10 KD ZH487 

cells, as identified by ATAC-seq analysis. SES-normalised signals of SOX10 ChIP-seq, ATAC-

seq, and BRD4 ChIP-seq are displayed. Signal intensity is shown in the blue-red heatmaps, 

where each row shows a single ATAC peak, as indicated by the vertical dashed lines, and 

1kbp further 5’ and 3’. The line plots at the top of each heatmap display the mean signal 

intensity across all the regions in that category (control: green; SOX 10 KD: blue). b Volcano 

plots of de novo motif finding with HOMER from the differentially bound ATAC-seq peaks in 

the ZH487 cells. The significantly enriched motifs are labelled. c Visualisation of ChIP-seq 

signal at SOX10 peaks in the ZH487 model. Per-factor scaled, SES-normalised signal is 

visualised for each SOX10 peak, extended for a further 1kbp on either side. d The epigenomic 

landscape of RUNX2 in the LN229 cell line in control (NT) and shSOX10 conditions. The tracks 

display (from top to bottom): RNA-seq; ATAC-seq; ChIP-seq signal for BRD4, H3K27ac and 

H3K4me1; and the ChromHMM annotation. Regions of interest are denoted with boxes (Prom, 

promoter; Enh. 1-3, candidate enhancer regions). e RUNX2 RNA expression levels in LN229 

and ZH487 cells measured by RT-qPCR following JQ1 treatment (500nm, 6h) and SOX10 

repression. f JQ1 treatment blocks BRD4 recruitment to RUNX2 enhancer regions in the 

LN229 model. The four open chromatin regions labelled in (H) (Prom, Enh. 1-3) were tested 

for BRD4 binding using ChIP-qPCR following SOX10 repression and JQ1 treatment (500nm, 

6h). In (e) and (f) the mean values of 3 technical replicates of one experiment are shown. 

  



13 
 

Supplementary Fig. 6 
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Supplementary Fig. 7. Uncropped Western blots. a BRD4/SOX10 co-IP in the cell line 

LN229 (Figure 5h). b SOX10 knockdown in the cell lines LN229 and ZH487 (Supplementary 

Fig. 5a). 
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Supplementary Table 1 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Goat anti-human SOX10 (Western blot) Santa Cruz Cat#sc-17342 

Rabbit anti-human SOX10 (ChIP-seq, Co-IP) Abcam Cat#ab155279,  

lot GR113617-51 

Rabbit anti-Iba1 antibody (IHC) Wako Cat#019-19741 

Rabbit polyclonal BRD4 Ab (ChIP-seq, WB and ChIP-qPCR) Bethyl Lab. Cat#A301-985A100 

H3K27Ac (GB patient ChIP-seq) Active Motif Cat#AM#39133, lot 5 

H3K4me1(GB patient ChIP-seq) Active Motif Cat#AM#38297, lot 1 

H3K4me3  (GB patient ChIP-seq) Active Motif Cat#AM#39159, lot 2 

H3K9me3  (GB patient ChIP-seq) Active Motif Cat#AM#39161, lot 3 

H3K27me3 (GB patient ChIP-seq) Millipore Cat##07-449, lot 

2382150 

H3K36me3 (GB patient ChIP-seq) Active Motif Cat#AM#61101, lot 7 

Rabbit polyclonal to Histone H3 (cell line ChIP-seq) Abcam Cat#ab1791 

Rabbit polyclonal to Histone H3K4me1 (cell line ChIP-seq) Abcam Cat#ab8895 

Rabbit polyclonal to Histone H3K4me3 (cell line ChIP-seq) Abcam Cat#ab8580 

Rabbit polyclonal to Histone H3K9me3 (cell line ChIP-seq) Abcam Cat#ab8898 

Rabbit polyclonal to Histone H3K27ac (cell line ChIP-seq) Abcam Cat#ab4729 

Rabbit polyclonal to Histone H3K36me3 (cell line ChIP-seq) Abcam Cat#ab9050 

Rabbit polyclonal to Histone H3K27me3 (cell line ChIP-seq) Abcam Cat#ab6002 

alpha-Tubulin  Sigma  Cat#T-9026 

Green Fluorescence Protein (immunofluorescence) abcam Cat#13970 

Allograft Inflammatory Factor 1 (IBA1; immunofluorescence) Wako Cat#019-19741 

   

Bacterial and Virus Strains  

TOP10 Chemically Competent E. coli Invitrogen Cat#C404010 

Lentivirus (pLKO1, constitutive, packed in HEK293) Sigma Aldrich Cat# SHC001 

Lentivirus (pLKO-Tet-On, packed in HEK293)  Addgene Cat#21915 

Lentivirus (CRISPRi) pU6-sgRNA EF1Alpha-puro-T2A-

BFP 

Addgene Cat#60955 

   

Biological Samples   

Human glioblastoma tissue samples Moscow, Russia 

 

Burdenko Neurosurgical 

Institute  

   

Chemicals, Peptides, and Recombinant Proteins 

DMEM medium Sigma Cat#D5546 

L-glutamine Sigma Cat#G7513 

Pen-strep Sigma Cat#P4333 

Fetal bovine serum Gibco Cat#10082147 

Tet-Free FBS   Clontech Cat#631106 

Neurobasal medium Invitrogen Cat#10888-022 

Human Recombinant EGF Gibco Cat#PHG0311 

Human Recombinant FGF Biomol Cat#50361 

B27 medium Invitrogen Cat#12587010 

QuantiTect Rev. Transcription Kit (50)  Qiagen Cat#205311 

Puromycin   Gibco Cat#A1113803 
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RNase-Free DNase Set (50) Qiagen Cat#79254 

QIAquick PCR Purification Kit (250) Qiagen Cat#28106 

QIAprep Spin Miniprep Kit (250) Qiagen Cat#27106 

QIAGEN Plasmid Maxi Kit (25) Qiagen Cat#12163 

RNeasy Mini Kit (250) Qiagen Cat#74106 

Bioanalyzer High Sensitivity DNA Analysis Agilent Cat#5067-4626 

Qubit™ dsDNA HS Assay Kit Invitrogen Cat#Q32851 

Qubit™ RNA HS Assay Kit Invitrogen Cat# Q32852 

DMEM/HAM F12 Biochrom Cat#F4815 

   

Critical Commercial Assays 

TruSeq Stranded Total RNA LT Sample Prep Kit  Illumina  Cat#RS-122-2201 

Paired-End Sample Prep Kit Illunima Cat#PE-102-1002 

EZ DNA Methylation Kit Zymo Research Cat#D5001 

Magna ChIP™ A/G Chromatin Immunoprecipitation Kit Merck-Millipore Cat#17-10085 

   

Deposited Data 

Raw data (restricted access) EGA EGAS00001003230 

Processed and pseudo-anonymised data GEO GSE121723 

   

Experimental Models: Cell Lines 

Human: LN229 ATCC Cat# CRL-2611 

Human: GB patient-derived ZH487 Zurich University  N/A 

Human: HEK-293T ATCC Cat#CRL-3216 

Mouse: mGB1  DKFZ Peter Angel’s lab 

   

Oligonucleotides 

qPCR Primers (see Supplementary Data 13) This paper N/A 

shRNA oligoes targeting human and mouse SOX10  

(see Supplementary Data  13) 

This paper N/A 

CRISPR-Cas9 SOX10 knockdown constructs  

(see Supplementary Data  13) 

This paper N/A 

ChIP-qPCR primers sequence 

(see Supplementary Data  13) 

This paper N/A 

   

Recombinant DNA 

pLKO.1-puro  Sigma Aldrich Cat# SHC001 

psPAX2 (lentivirus packaging plasmid) Addgene Cat#12260 

pMD2.G (Lentivirus envelope plasmid) Addgene Cat#12259 

   

Software and Algorithms 

R R-Project 3.4.3, 3.5.1 

STAR Open Source 2.3.0e 

htseq-count Open Source 0.6.0 

bwa-mem Open Source 0.7.8 

methylCtools Open Source 1.0.0 

BEDTools Open Source 2.27.1 

MethylSeekR  1.14.0 

Snakemake Open Source 3.13.3 
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TrimGalore Open Source https://github.com/FelixKrueger/

TrimGalore 

deepTools2 Open Source DeepTools (v. 2.3.1); Ref. 10 

MACS2 Open Source 2.1.1.2016030 

https://github.com/taoliu/MACS 

BowTie2 Open Source v. 2.3.4.39 

SICER  Ref. 22 

ChromHMM Open Souce 1.19 

ROSE2 Open Source https://github.com/BradnerLab/

pipeline/ 

bigWigAverageOverBed Open Source v2 

CRCmapper Open Source version 1.0 (December 2015) 

Ref. 13 

GSEA Broad Institute v3.0 

HOMER Open Source 4.9.1 

minfi Bioconductor 1.24.0 

conumee Bioconductor 1.30.0 

edgeR Bioconductor 3.20.1 

limma Bioconductor 3.34.4 

GSVA Bioconductor 1.26.0 

ESTIMATE Bioconductor 1.0.13 

clusterProfiler Bioconductor 3.6.0 

cola Bioconductor 1.0.0 

gcrma Bioconductor 2.50.0 

sva Bioconductor 3.26.0 

RTN Bioconductor 2.3.4 

ggplot2 Bioconductor 2.2.1 

monocle Open Source 2.10.1 

viper Bioconductor 1.14.0 

ComplexHeatmap Bioconductor 1.18.1, 1.19.1 

Rtsne CRAN 0.13 

ChIPpeakAnno Bioconductor 3.12.4 

EnrichedHeatmap Bioconductor 1.9.2 

TxDb.Hsapiens.UCSC.hg19.knownGene Bioconductor 3.2.2 

DiffBind Bioconductor 2.6.6 

circlize Bioconductor 0.4.6 

Gviz Bioconductor 1.22.3 

epik Open Source https://github.com/jokergoo/epik 

featureCounts in the Subread suite Open Source 1.5.3 

  

https://github.com/taoliu/MACS
https://github.com/jokergoo/epik
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Supplementary Table 2 

 

qPCR primers 

name species primer sequence 

SOX10-F human CTTTCTTGTGCTGCATACGG 

SOX10-R human AGCTCAGCAAGACGCTGG 

ERBB3-F human CAAGTTCCCTTGAGGAGCTG 

ERBB3-R human CATCTCGTTGCCGATTCATA 

Olig2-F human GCTCCTCAAATCGCATCCA 

Olig2-R human AAAGGTCATCGGGCTCTG 

CSPG4-F human TGGCCTTCACTGTCACTGTCC 

CSPG4-R human CACTTGCTTCTGGGCCGTCACTCG 

CD44-F human GACACCATGGACAAGTTTTGG 

CD44R human AAGCGGCAGGTCATATTCAA 

RUNX2-F human TGGTTACTGTCATGGCGGGTA 

RUNX2-R human TCTCAGATCGTTGAACCTTGCTA 

FOSL2-F human CAGAAATTCCGGGTAGATATGCC 

FOSL2-R human GGTATGGGTTGGACATGGAGG 

SERPINE1-F human ACCGCAACGTGGTTTTCTCA 

SERPINE1-R human TTGAATCCCATAGCTGCTTGAAT 

ARF-F human GACCACGATCCTCTACAAGC 

ARF-R human TCCCACACAGTGAAGCTGATG 

DCTN2-F human CGCCATGGCGACCCTAAAT 

DCTN2-R human TTGTCAGCTCCTCCGCATCGAA 

Sox10-F mouse GTGCCAGCAAGAGCAAGCCG 

Sox10-R mouse CTGCCTTCCCGTTCTTCCGCC 

Hprt-F mouse CTTCCTCCTCAGACCGCTTTTT 

Hprt-R mouse ATGTAATCCAGCAGGTCAGCAA 

Gapdh-F mouse GTGCAGTGCCAGCCTCGTCC 

Gapdh-R mouse CAGGCGCCCAATACGGCCAA 

ChIP-PCR primers 

RUNX2-Prom-F human CCATCACCTCCATCCTCTTTC 

RUNX2-Prom-R human  AATACGCATCACAACAGCC 

RUNX2-enh1-F human TTTTTCTGCTGCGAACAATG 

RUNX2-enh1-R human CCCCAAAGACTTCCAAAACAC 

RUNX2-enh2-F human CTTTCCATTCCTCTTCTCTTCC 

RUNX2-enh2-R human CGAAAATAGCTCAGCTCTGAC 

RUNX2-enh3-F human CCAAAAGAACGACCACAAAAC 

RUNX2-enh3-R human CCAAAACCCTCTCCCAGAAC 
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Supplementary Table 3 
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Supplementary Methods 
 
General settings for sample-wise methylation features: methylation was represented as 
vectors of beta values, in which the order of data points corresponds to chromosomal CpG 
positions. Methylation features (partially methylated domains (PMDs), lowly methylated 
regions (LMRs), DNA methylation valleys (DMVs)) are defined based on the comparison of 
methylation measurements between genome segments. Each segment should be 
homogeneous in its methylation, relative to outside regions. We used the Bayesian framework 
and dynamic programming approach of fastseg (1.20.0) 1 to identify change points in the 
genome corresponding to segment borders. 

As fastseg does not take consideration the distance between CpG sites, each chromosome 

was split into blocks if the gap between two adjacent CpG sites is larger than 100kb. Blocks 

containing less than 50 CpG sites were removed.  

While fastseg can predict segment borders, each segment must still be classified based on 

its methylation. To do so, we examined the distribution of the mean and standard deviation of 

methylation in segments. The following plots visualize the distribution of segments’ methylation 

means and standard deviations for all tumour samples and all normal samples, separated by 

subtype: 

 
Supplementary Fig. 8. Methylation segment classification. Mean methylation (beta values; X-axis) are 
plotted against the standard deviation of methylation (Y-axis). Red and blue boxes indicate the low and 
high methylation segments for each glioblastoma subtype and normal brain samples. IDH, n = 12; MES, 
n = 19; RTK I, n = 12; RTK II, n = 17 samples. 

 

It is clear that there are at least two major clusters of data points: one corresponding to low 

methylation and the other corresponding to high methylation. The remaining points form a 

sparse and heterogeneous intermediate group. According to the distribution of the points, we 

categorized segments into three groups using the following cutoffs: 

 

● Group 1 segments, low methylation: IDH: mean < 0.15; MES: mean < 0.15; RTK I: 

mean < 0.10; RTK II: mean < 0.15. (marked by red rectangles) 

● Group 3 segments, high methylation: IDH: mean > 0.7; MES: mean > 0.65; RTK I: 

mean > 0.55; RTK II: mean > 0.60. (marked by blue rectangles) 

● Group 2 segments, intermediate methylation: all remaining segments. 
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Supplementary Fig. 9. Methylation segment features. Comparison of the three methylation segment 
types based on their number and length in all subtypes. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK 
II, n = 17 samples. 

 

The above summary plot shows the number of segments, mean segment width and the total 

number of base pairs of segments in all tumour samples. We observe overall that there are 

more group 2 segments by absolute number, but group 3 segments are much longer on 

average and represent the majority of the genome. For some samples which show global 

hypomethylation (RTK I subgroup), the group 2 segments are longer and represent most of 

the genome. Group 1 segments are short and occupy much smaller proportions of the genome. 

Next we define different methylation features based on the three sets of segments. 

 

DNA methylation valleys. DNA methylation valleys (DMVs) are regions showing very low 

methylation. One major feature identifying DMVs is that they are highly hypomethylated 

compared to the flanking regions. As such, we looked for DMVs in group 1 segments. For each 

segment, we denote the mean methylation as m, we calculated the absolute methylation 

difference to its two neighbouring segments: 

mdiff = min(|m - mleft|, |m - mright|) 

and to meet the assumption that methylation drops within DMVs, we defined an additional 

criterion: 

m < mleft and m < mright 

To determine the cutoff of mdiff, we plotted mdiff vs segment width for all tumour samples and all 

normal samples. The distributions in the following plots are quite homogeneous. For DMVs, 

we simply set mdiff > 0.5 for IDH/MES/RTK II/normal while mdiff > 0.3 for RTK I (vertical dashed 

lines). 
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Supplementary Fig. 10. Identification of DNA methylation valleys. Methylation difference to 
neighbouring segments (beta values; X-axis) are plotted against the segment widths (Y-axis). The five 
plots in the first row were made as scatter plots and the plots in the second row were made as contour 
plots for visualizing the 2D density distributions of data points. Vertical dash lines corresponded to the 
cutoffs for selecting DMVs. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK II, n = 17 samples. 

 
Lowly methylated regions: Similar to DMVs, lowly methylated regions (LMRs) also show 
lower methylation compared to neighbouring segments; however, the absolute methylation 
level is not as low as in DMVs. We searched for LMRs in group 2 segments. As with DMVs, 
we plot the absolute methylation difference versus the width of group 2 segments. In contrast 
to the same plots for DMVs, we observed two major clusters in these plots. One cluster 
corresponds to relatively higher methylation with shorter widths, and the other to relatively 
lower methylation with longer widths. As LMRs are normally short regions, we defined 
segments as LMRs if the methylation difference is larger than 0.26 and the width is less than 
5kb (green rectangles on plot). 

 
 
Supplementary Fig. 11. Identification of lowly methylated region. Methylation difference to 
neighbouring segments (beta values; X-axis) are plotted against the segment widths (Y-axis). The five 
plots in the first row were made as scatter plots and the plots in the second row were made as contour 
plots for visualizing the 2D density distributions of data points. Green rectangles covered the segments 
that were selected as LMRs. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK II, n = 17 samples. 
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Partially methylated domains. MethylSeekR (1.14.0) 2 was used to detect PMDs. The PMD 
segments are filtered by width > 10kb. 
 
 
Consensus regions: As DMV/LMR/PMD are called for each sample separately, we defined 
the subtype-wide consensus feature set as follows. For k sets of e.g. LMRs, segments with a 
cross-sample coverage larger than or equal to 4 are kept as subtype-level consensus LMRs. 
Finally neighbouring LMRs are merged if the distance between them is less than 1kb, to 
minimise the number of small segments. 
 
Enrichment of genomic features: we adopted the following method to calculate the 

enrichment of a set of methylation features (e.g. LMRs) in another set of genomic features 

(e.g. genes or certain chromatin states). We calculated the overlap of the two sets of regions 

of interest using the Jaccard coefficient, defined as the total number of basepairs in the 

intersection of the two sets divided by the total number of basepairs in the two sets’ union. The 

significance of this overlap is calculated by comparison to a background set of genomic regions 

with a comparable CpG content. Background regions were selected as follows steps: 1) Select 

a proper window for the methylation feature sets. Regions in methylation feature sets are split 

into windows with size w, defined as the 25th quantile of all widths in that set, rounded to the 

thousandth digit. If w is smaller than 1kb or larger than 10kb, it is set to that value. Small 

windows with width less than w/4 are filtered out. 2) Calculate the CpG content for those 

windows. For this filtered window list, the number of CpG sites per 1kb is calculated and 

denoted as a vector p. 3) Select genomic background with similar CpG content. The number 

of CpG sites per 1kb is also calculated for all 1kb windows in the genome, denoted as pg, and 

appropriate CpG-matched background genomic regions are selected by picking windows with 

pg between the 5th and 95th percentiles of p from the methylation feature window list. The 

background distribution of overlaps is calculated by randomly permuting the input methylation 

regions with these CpG-matched background regions 1000 times using bedtools (v2.27.1) and 

calculating the Jaccard coefficient. Finally, a z-score of enrichment is calculated, (s - 𝜇)/𝜎, 

where s is the Jaccard coefficient for the two sets of regions and 𝜇 and 𝜎 are the mean and 

standard deviation of the Jaccard coefficient in the random permutation. 
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